Mutations in FlbD that relieve the dependency on flagellum assembly alter the temporal and spatial pattern of developmental transcription in Caulobacter crescentus.

نویسندگان

  • Rachel E Muir
  • James W Gober
چکیده

The transcription factor FlbD regulates the temporal and spatial transcription of flagellar genes in the bacterium Caulobacter crescentus. Activation of FlbD requires cell cycle progression and the assembly of an early (class II) flagellum structure. In this report, we identify 20 independent gain-of-function mutations in flbD that relieve regulation by flagellar assembly. One of these, flbD-1204, contained a mutation in the receiver domain (V17M) and another, flbD-1231, in the DNA binding domain (V451G). Both of these mutations resulted in an aberrant pattern of cell cycle transcription. The presence of the FlbD-1204 allele also resulted in a loss of swarmer-pole-specific transcription. These results indicate that temporal and spatial transcription is influenced by the assembly of the nascent flagellar structure. The trans-acting positive and negative regulatory factor, FliX, couples flagellar assembly to the activation of FlbD and, as we show here, also influences temporal transcription. Furthermore, we show that FliX can suppress the activity of FlbD mutants that cannot be phosphorylated, and that FliX is required for FlbD stability, and vice versa. These results indicate that FliX may interact directly with FlbD to regulate its activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Caulobacter crescentus flagellar gene, fliX, encodes a novel trans-acting factor that couples flagellar assembly to transcription.

The first flagellar assembly checkpoint of Caulobacter crescentus couples assembly of the early class II components of the basal body complex to the expression of class III and IV genes, which encode extracytoplasmic structures of the flagellum. The transcription of class III/IV flagellar genes is activated by the response regulator factor, FlbD. Gain of function mutations in flbD, termed bfa, ...

متن کامل

Regulation of late flagellar gene transcription and cell division by flagellum assembly in Caulobacter crescentus.

Biogenesis of the single polar flagellum of Caulobacter crescentus is regulated by a complex interplay of cell cycle events and the progression of flagellum assembly. The expression of class III/IV flagellar genes requires the assembly of an early flagellar basal body structure, encoded by class II genes, and is activated by the transcription factor FlbD. Previous experiments indicated that the...

متن کامل

Global regulation of a sigma 54-dependent flagellar gene family in Caulobacter crescentus by the transcriptional activator FlbD.

Biosynthesis of the Caulobacter crescentus polar flagellum requires the expression of a large number of flagellar (fla) genes that are organized in a regulatory hierarchy of four classes (I to IV). The timing of fla gene expression in the cell cycle is determined by specialized forms of RNA polymerase and the appearance and/or activation of regulatory proteins. Here we report an investigation o...

متن کامل

The trans-acting flagellar regulatory proteins, FliX and FlbD, play a central role in linking flagellar biogenesis and cytokinesis in Caulobacter crescentus.

The FliX/FlbD-dependent temporal transcription of late flagellar genes in Caulobacter crescentus requires the assembly of an early, class II-encoded flagellar structure. Class II flagellar-mutant strains exhibit a delay in the completion of cell division, with the accumulation of filamentous cells in culture. It is shown here that this cell-division defect is attributable to an arrest in the fi...

متن کامل

Role of integration host factor in the transcriptional activation of flagellar gene expression in Caulobacter crescentus.

In the Caulobacter crescentus predivisional cell, class III and IV flagellar genes, encoding the extracytoplasmic components of the flagellum, are transcribed in the nascent swarmer compartment. This asymmetric expression pattern is attributable to the compartmentalized activity of the sigma54-dependent transcriptional activator FlbD. Additionally, these temporally transcribed flagellar promote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular microbiology

دوره 43 3  شماره 

صفحات  -

تاریخ انتشار 2002